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IFFRACTION OF KELVI D 

1. 

The Wiener-Hopf method is used to derive an exact solution of the problem 
of diffraction of Kelvin waves in a rotating channel containing a semi- 
infinite wall. A numerical analysis of the solution is carried out. The 
nature of the waves propagating in the channel is considered. 

Statement of the problem. jet a channel -b<y< a,--oa< E< +w situated on 
a plane Earth, rotating anticlockwise at an angular velocity o, have a semi-infinite wall 
y=o,Z<o (Fig.1). The channel depth is constant and equal to h. The axis of rotation is 
normal to the xy plane and passes through the point with coordinates (0, 0). 
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of the semi-infinite wall. 

We will consider in this channel the steady-state 
wave motions of the liquid surface i.e. we will assume 
that the elevations E(z,y,t) depend harmonically on 
time 6 (z, I/) exp (iat). Let us consider the case when 
U>20. In the linear theory of long surface waves 
/l/ the function [(z, y) is the solution of the wave 
equation I 

(A + x2) E (z, y) = 0, x2 = (u2 - 4o*)l(gh) 

where g is the acceleration of free fall and A is the 
two-dimensional Laplace operator. 

Suppose that alonq the semi-infinite channel wall 
in the'region O< y<a, -x3< z<O a Kelvin wave 
propagates with unit amplitude 

50 (xv Y) a exp (iTj%X - Iqxy); 1+<1, q=(l_34 (1.1) 

We will investigate the wave motions in the channel 
generated by the diffraction of that wave at the edge 

We divide the channel into two regions, as shown in Fig.1. In region 1 (O< y< a, -x< 
x< +x) we represent the total elevation amplitude in the form f. + El , where E. is the 
incident wave and & the diffracted wave. In region 2 (-b< y< 0, -CO<+< +'30) we will 
represent the unknown elevation amplitude by e,. For the unknown functions fj(f = 1, 2) we 
obtain the problem of determining the solutions of equations 

(A + x2) E, b, Y) = 0 0 = 1, 2) (1.2) 

that satisfy the boundary conditions on the channel walls and the conditions of continuity of 
the y components of the velocities and elevations on the continuation of the infinite wall 

4 (2, a -0)=0,--oo<z<+~;V~(2,f0)=0,-C0<5<0 (1.3) 

v, (z, -b + 0) = 0, --x) < z< + co; v, (z. -0) = 0, -P < cc< 0 

VI (xv -t-O) - 172 (2, -O), 0 < t-c + 00 (1.4) 

50 (z, +o) + 51 (2, SO) = 5, (5, -O), 0 < x < + Z-Q 

Here vt (2. Y) is the velocity component of the liquid parallel to the y axis and connected 

with 51 (x. Y) by the relation 

Vj(Z9Y)=- -&(z -& + i $)SjhY) (1.5) 

Finally, the diffracted waves must satisfy the condition on the edge /2/ 

5,N r'/z, r - 0, T = (X2 + y*)'l* (1.6) 

and the radiation condition: the solution at infinity must contain only diverging waves. 
It can be shown that in the class of bounded functions problem (l.l)-(1.6) has a unique 

solution. 

*Prikl.Matem.Mekhan.,47,6,947-95X,1983 

756 



757 

2. The system of paired integral equations and its solution. Equations (1.1) 
- (1.6) will be solved by the Wiener-Hopf method /3/. For this we assume that the wave number 
x has a small positive imaginary part, i.e. x=x0 + is , and in the final results we let s 
tend to zero. The introduction into x of an imaginary part corresponds to the assumption of 
energy dissipation in the liquid. 

We introduce the unknown functions A (a), B (a), G (a), D (a), 2, (a), Z, (a), Z,’ (a), Zs (a) of the 
complex variable a , using the formulas 

El(x,y)= ~mexp(i~)[A(u)siny(y-u)+ B(a)sinyy]da 
-03 

&x(x,v)=Texp (k@) [G(rr)siny(y + Q+ D(a) sin vy] da 
-0D 

d (2, a - O)=~mexp(icu)Z~(a)da 

(2.1) 

&I (2, + 0) = +f exp (taz) Z; (a) da 

z 
E2(&-0)= S exp(iaz)Zt(a)da 

-0D 

Ez(z, -*+O)=T p(’ )Zs(a)da _-ex m.x 

where y = (x8 - ar)llS and the branch of the root is selected so that Imy> 0. 
It can be seen that these functions are not independent 

A (a) = -Z,’ (a)/sin yu, B (a) - Z1 (a)/sin ya 

G (a) = Z, (a)/sin yb, D (a) = -Z, (a)/sin yb 

From the conditions for the wall to be impermeable y = a, y = -b we have 

ZI (a) = 
vz; (4 

ZS (a) = 7% (0) 
yens y 0 + al sin ya ’ yens yb - ab sin yb 

(2.2) 

(2.3) 

We will introduce the new unknown function V(a)using the formula 

+m 
LQ(s,O)= - <& 

s 
exp (iaz) V (a) da (2.4) 

-0D 

Applying (1.5) to the integral representations for elevations (2.1) we obtain, taking 
(2.2)-(2.4) into account, the dependence of Z,'(a) and Z,(a) on V(a) 

Substituting the integral formulas into the second boundary condition (1.4) and using 
the condition of impermeability of the semi-infinite wall, we obtain the system of paired 
integral equations 

(2.5) 

+- 
1 exp(iar)V(a)dcr=O, s<O 
-CD 

L(a)= 
sin y (o + b) ya yb 

Y (a T b) qyb an yb 

To solve (2.5) we factorize the kernel of the integral equation L(a), i.e. we represent 
it in the form L(a)=L+(a)L_(a), where the function L+(a) is analytic and has no zeros in 
the upper half-plane of the complex variable a, and the function L_(a) has the same propert- 
ies in the lower half-plane of the complex variable a. 
has often been used in the literature /3, 

Factorization of the function sinvaiya 
4/, hence we present here the final result of this 

procedure for the kernel of L(a) 

* L+(c) = (+ Sin “.” Sin w EM xb 
)“‘exp (P (a)) x (2.6) 
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fi (1 7 e) exe(s) [(I 
n=* 

- -$-)exp(s)( 1 f e) >: exp(+)l-l 
: 1 

We will seek a solution of (2.5) in the form 

V (a) = Q/L (4 (2.7) 

where Q is an unknown constant. With this selection of the function V(a) the second of the 
equations of (2.5) is identically satisfied. To determine the constant Q we substitute (2.7) 
into the first of the integral equations of (2.5) and calculate the residue in the strip 
a==qx. We obtain 

Q= xab 
ss(a+b)L+(V+) 

(2.8) 

The solution (2.7), (2.8) satisfies the condition on the edge (1.6), which by the theorem 
on the relation between the asymptotic form of the function and its Fourier image /5/, takes 
for the function V(a) the following form: 

V (a) -&I* as a-30 

Knowing the explicit expression for V(a)it is possible to construct the formulas for the 
elevations of the surface of the liquid in the channel. 

3. Formulas for the elevations. We will start by investigating the elevations in 
the branched part of the channel, i.e. when x(0, Starting with (2.1) we can obtain the 
following integral representation for the elevations in region 1: 

El (x9 Y) = 1 (4 

I(d) = iqlr exp (iaz) (y 0x3 y (y - d) - al sin y (y - d)] 

sinyd(d- **) V(a) du 
-m 

(3.1) 

To evaluate 
of the integrand 
obtain 

In region 2 the elevations are defined by the integral relation 

the integral in (3.1) when r( 0 it is sufficient to determine the residues 
of the function at simple poles --rl%, -%a (s = 1, 2, . . .). As the result, we 

$1 (XT Y) = nq21$$$#-exp[-iqxt+Iqx(y-a)]-& 

El (Xl Y) = 1 (4 

(3.2) 

(3.3) 

When Ima< , the integrand has simple poles at the points -Y%, -a,i, (n - 1, 2, . . .). 
In the expression for s2 waves propagating in region 2 in the negative direction of the x 
axis correspond to them 

where the expression for 2 B is similar to 2, (with a. replaced by b) . 
In the half-plane Ima>O the integrand in (3.3) has simple poles at the points nx, 

anc(n = 1,2,. ..). The respective wave motions in region 2 when x>O are defined as follows: 

5~(x.y)=$-$$#exp[iqw-Lqx (y -+ b)]+ 

m 

2n x res V (a& 

n_1 sin y,,h (yiC + a&l*)"x sin[y,,(~ + 4 - cp,,lexp (&wd 

(3.5) 

where the expressions for (pnc, Vnc are similar to those in (3.2) (with a replaced by c); and 
r~s V(U,,) is the residue of the function V(a) when a. = ant. 

It can be shown that (3.5) also holds for the elevations in region 1 when x> 0 , taking 
the incident Kelvin wave into account. 
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We will now investigate the nature of the surface wave motions in the channel. In each 

of formulas (3.2), (3.4), and (3.5) the first term defines a Kelvin wave and the infinite sum 
corresponds to progressive and decaying waves. Progressive waves correspond to real values 

of CL,~ (d = a, b, c) and, exponentially decaying waves correspond to imaginary values. For a 
given value of the dimensionless channel width nd the number of progressingwaves is equal to 
the integral part of xdln. 

Thus, depending on the relation between the quantities a, b,c,x,n one or another number 
of undamped waves can propagate in the channel, in which case Kelvin waves will exist for any 
xd. 

4. Propagation of Kelvin waves along an infinite wall. Suppose that in the 
channelshown in Fig.1 along the wall y = -b a Kelvin wave of unit amplitude 

&((t, y)=exp [irpcz -_Vjx (y I O)] 

propagates in the positive direction of the x axis. 
Solution of the problem of diffraction of this wave using the method described in Sects. 

1 and 2 leads to a system of paired integral equations 

(4.1) 

+j+exp(iat)Y(a)du=O, 2<0 
-m 

In these equations the notation is exactly the same as in Sects.1 and 2. Equation (4.1) 
is solved by the method of factorization , and the unknown function is sought in the form 
V (a) = R/L_ (a). It is obvious that R = --i exp (--l@)Q. The wave motions that occurs in this 
case are the same as those described in Sect.3, except that their amplitude is exp Urlxb) 
times less, i.e. the right-hand sides of (3.2), (3.4), and (3.5) are multiplied by--i eXp(-Z& 

The problem of the diffraction of a Kelvin wave propagating along an infinite wall in a 
branched channel was, first, solved by the Wiener-Hopf method in the Jones interpretation in 
/6/, and somewhat later in /7/. The equations obtained there for the wave amplitude in a 
channel are the same as those obtained by multiplying the amplitudes in (3.21, (3.41, and (3.51 
by -iexp (A@). 

It should be noted that in /7/, as well as in /8/ on a similar theme by the same author, 
it was stated that the amplitude of the n-th progressive wave in the channel approaches in- 
finity as and-+OI i.e. when xd--nn(d= a, b, cl. and the formulas for the elevations hold for 
xd not too close to xn , because in the expressions for the amplitudes of the progressive 
waves (3.21, (3.4) and (3.5) the wave parameters &,d are in the denominator. However, the 
numerator in these expressions always contains a multiplier of the form (sinnd)"' that approach- 
es zero as xd- an at the same rate as a,,,,. Hence, the amplitude of any progressing wave in 
the channel is always finite, and the solution (3.21, (3.41, and (3.5) holds for any xd. 

5. Interpretation of the results of a numerical analysis. The amplitudes of 
the waves in the channel wave investigated numerically. For this the infinite products in 
(2.6) were replaced by finite products with N multipliers. 

We will estimate the error of such reduction. We denote byPN the finite product, typica: 
for problems of wave diffraction in channels /6-ll/, 

(5.1) 

Then the relative error of the reduction is 

In the product (5.1) we have c&d s* i&d for large n. If we neglect terms whose order 
of magnitude are less than ad/so2 , we obtain the following estimate for the relative reduc- 
tion error: 

For values adi'n = 1 the quantity E& will be less than 1% when N- 100. 
In Fig.1 we show the dependence on xa for &in = 0.4 of the amplitude of the Kelvin 

wave propagating in the non-branching part of the channel (the dash-dot line), the dependence 
on xa of the amplitude of the Kelvin wave propagating in region 2 in the negative direction 
of the x axis (the dashed line), and the dependence on xa of the amplitude of progressive 
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waves in region 1 when X<O (the solid line). It can be seen that the amplitude of the 
Kelvin wave in the non-branching part of the channel approaches its limit value exp(--lnxb) 
obtained in /9/ as xa increases. 

A xa increases when %(a+ b)= m and xa = nn (n = 1,2,. .) progressive waves are formed 
in the regions x> 0, -b< y<a and x< 0, O< y<a , respectively. The value of the dimen- 
sionless width at which a new propagating wave is generated is called the threshold value. 
On the graphs of the amplitude the threshold values of the width correspond to the character- 
istic kinks, which are due to the redistribution of energy between propagating waves close to 
the threshold of generation of a new progressive wave. The rearrangement of wave motions when 
a new propagating wave starts is well-known in optics /12/, electrodynamics /13/ and in nucl- 
ear physics, where it is called the threshold effect. In the theory of long surface waves 
this effect was first indicated in /lo/. The threshold nature of the generation of progres- 
sive waves in channels was considered in /ll, 15/. 

The results of the present investigation can be used in geophysical calculations of tidal 
wave motion, as was done in /lo/. 
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The author thanks V.A. Beliakov for discussing the results. 
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